ECONOMICS 507: ECONOMETRICS I

Dr. K. Mundra Rutgers University, Newark
Office: Hill 821
Office hours: Wed 12 - 1 or any other time by appointment
Phone: 973-353-5350
Email: kmundra@andromeda.rutgers.edu

Description and Learning Goals
Econometrics, literally “economic measurement,” is a branch of economics that attempts to quantify theoretical relationships. This course presents topics in econometrics including a classical linear regression model and some advance topics. This course will have both a theoretical and an applied econometrics components. There will be a focus on using econometrics software in estimating econometrics models learned during the semester and interpreting the results. Students will also learn to read journal articles applying various econometric models and presenting the findings.

Pre-requisites
Students should have a basic knowledge of statistical methods and some Calculus (640:119 or 640:135). An undergraduate training in introductory econometrics is recommended.

Grading
Grading will be based on exams, term project/homework as follows:

Midterm Exam 30%
Final Exam 35%
Homework Assignments (Tentatively 2-3) 25%
(Including empirical project)
In Class Presentation of Journal Articles 10%
on topics covered

Exams
Midterm (Tentatively) (To be announced later)
Final (To be announced later)

Teaching method
The course consists of weekly lectures. During the semester some lecture time will be devoted to demonstrating the use of the econometrics software. Blackboard will be the website for the class.

Required Text

Suggested or Supplementary Texts

Statistics
The required textbooks cover statistics: Wooldridge: Appendices A-C; Pindyck and Rubinfeld: Ch 2

Econometrics Software
STATA. Any alternative software capable of estimating multiple regression and some advance models will be fine.

Course Outline
1. Review of the Classical Linear Regression Model with respect to Gauss Markov Theorem including functional form and dummy variable
 Wooldridge Chs: 1 – 7
 Pindyck and Rubinfeld: Chs 1 - 5

2. Matrix Review and the Classical Regression Model in Matrix Form (Optional)
 Wooldridge: Appendix D & E
 Pindyck and Rubinfeld: Appendices Chs 1-6

3. Violations of the Classical Linear Regression Assumptions
 Heteroscedasticity; Serial Correlation; Measurement Error
 Wooldridge Chs: 8 – 9 & 12
 Pindyck and Rubinfeld: Ch 6

4. Simultaneous Equation Estimation
 Identification; Instrumental Variable Estimation and Two Stage Least Squares (2SLS); Seemingly Related Regression (SURE); Three Stage Least squares (3SLS)
 Wooldridge: Chs 15 - 16
 Pindyck and Rubinfeld: Ch 7 and Ch 12

5. Maximum Likelihood Estimation (MLE)
 Wooldridge: Appendix C
 Pindyck and Rubinfeld: Appendix 2.2
6. Qualitative Choice Models
 Probit, Logit, and Tobit Model
 Wooldridge: Ch 17
 Pindyck and Rubinfeld: Ch 11

7. Time Series
 White noise, Trend, AR, MA, and ARMA process; Causality and Unit Root Tests;
 Forecasting
 Wooldridge: Chs 10 – 12 & parts of Ch 18
 Pindyck and Rubinfeld: Chs 8-9 & Chs 16-17
 (Additional Readings)

8. Panel Data Model
 Simple pooling; Fixed effect and random effect model; Panel Data Hypothesis test
 Wooldridge: Ch 13 & Ch 14

 (Additional Readings)